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SUMMARY 
An exact solution is obtained for the Hartmann problem of the viscous laminar flow of an electrically conducting 
liquid between parallel walls in the presence of a transverse magnetic field when effects of thermal radiation are sig- 
nificant and thermal conductivity may be neglected. 

I. Introduction 

A simple yet basic problem in magnetohydrodynamics consists of the analysis of the steady 
viscous laminar flow of an electrically conducting liquid between parallel plane walls in the 
presence of a transverse magnetic field and a streamwise pressure gradient. A study of this 
(commonly called) Har tmann flow leads to an understanding of the fundamentals of magneto- 
hydrodynamic pump, generator and flow meter design, as well as laying a foundation for an 
investigation into a host of other devices incorporating viscous flow phenomena. In numerous 
applications however the liquid is likely to be sufficiently hot for effects of thermal radiation to 
be significant and this paper is thus concerned with an examination of radiative Har tmann flow. 

2. The governing equations 

We consider flow, parallel to the x-axis, down a long channel of great width in the z-direction 
between walls parallel to the xz-plane distance 2h apart, where Oxyz comprise a set of orthogonal 
cartesian axes with origin midway between the walls. The bounds of the channel normal to 
the z-axis are taken to be electrodes whilst the walls normal to the y-axis are insulators. In 
order to study radiative effects in a simple configuration it is assumed that the electrodes are 
perfect conductors and the walls perfect insulators whilst the liquid electrical conductivity 
is finite. Furthermore it is supposed that the electrodes are set infinitely far apart. The problem 
then becomes one-dimensional and with the possible exception of the pressure all variables are 
functions of y alone. 

With an external magnetic field Bo applied uniformly across the channel normal to the 
insulator walls the analysis of the equations of momentum, continuity and electromagnetism 
is classical, as presented for instance in the text by Boyd and Sanderson [1]. One obtains the 
following results : 

The electric field has a single component, Eo, which is constant and directed parallel to the 
z-axis. 

The electric current similarly has a single component, j, acting in the same direction. 
The magnetic field has a component B, induced along the length of the channel whilst the 

component parallel to the y-axis remains constant with magnitude Bo. 
The pressure p takes the form 

p = - p o x + p '  

where Po is the pressure gradient down the channel. The transverse variation p '=p ' ( y )  is 
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given by the result that the total "pressure" ' 1 2 p + ~B~/# remains constant, where # is the per- 
meability. 

Then if a denotes the electrical conductivity of the liquid and u its velocity down the channel 
it follows that 

/ -   B ou+(po- EoBo)-= 0 (1) 

1 dB~ 
J= # dy - a(E~ + uB~ " (2) 

It remains to consider the energy equation. For a thermally conducting viscous liquid the 
effects of radiative heat transfer give rise to a term involving the radiative flux, q, which in this 
problem has a single component parallel to the y-axis. For temperatures which are not ex- 
tremely high the contributions from the radiative energy density and radiative pressure may be 
neglected (the contribution from the latter has already been neglected in the analysis of the 
momentum equation) and the equation becomes 

d ( k d T )  ( d u )  2 do 
+ .  - + O(eo+U o) = o ,  (3) 

where k is the thermal conductivity, t/the coefficient of viscosity and T is the temperature 
of the liquid. 

The closure of the set of governing equations requires a statement of the equation of radiative 
transfer and its relationship to the radiative flux. It is well known that this gives rise to a coupled 
system of integro-differential equations, somewhat intractable to analysis. Consequently 
various forms of approximation have been employed to simplify the formulation and to generate 
a system of equations which are entirely differential. One such approximation is indeed termed 
the differential approximation and has been shown to be particularly appropriate for use with 
one dimensional problems, see for instance the survey by Vincenti and Kruger [2]. We take 
the form relevant to a fluid of general opacity, viz. 

de q 3cd q = d (SAT4) (4) 
dy 2 dyy ' 

where e is the volumetric absorption coefficient averaged over all radiative frequencies, and 
# is Stefan's constant. 

Finally it is necessary to specify the boundary conditions at the channel walls. Cess [3] has 
recently discussed the form of the radiative conditions appropriate to the differential approxi- 
mation for the case of non-black walls. Thus if the lower wall has emissivity el and is maintained 
at temperature T 1 whilst the upper wall has emissivity ~2 and temperature T2 the radiative 
boundary conditions are 

4 5 T 4 - ( ~ 2  - 2) q ~l dq-4aT4;dy y = h "  (5) 

4 a T 4 + (  4 2) l dq - 4 a T e ;  Y = = h . (6) 
e~- - q ~ dy 

The no-slip condition for the fluid at the walls is expressed as 

u = 0 ,  y=+_h.  (7) 

If the fluid is thermally non-conducting, these comprise a.complete set of boundary conditions. 
However in the case when thermal conductivity is non-zero they must be supplemented by the 
requirement that the temperatures of a wall and fluid adjacent are continuous so that, respec- 
tively, 
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T= TI, T2 ; y=h, -h  (8) 

with corresponding adjustments to the conditions (5) and (6). 
It will be observed that equations (1) and (2) separate from (3) and (4) so that for radiative 

Hartmann flow the profiles of the velocity, current and magnetic field are not influenced by 
radiation. Thus, solving these independently, we introduce 

(pohp~( 1 "~ Pressure Ratio 
P =_ Bg ]\#haUoJ = Magnetic Reynolds No. 

( joh#'~ ( 1 "~ Current Ratio 
J = Bo / \ #haUo/= Magnetic Reynolds No. 

M = B 0 h -- Hartmann No. 

where Uo is the mean velocity and Jo the mean current density. Then it follows that 

1 
P = J +  

M coth M -  1 ' 

and the electric field is given by 

E - E~  = J - 1 .  
UoBo 

The variation with positionacross the channel of the velocity, current density and induced 
magnetic field (taking as boundary condition for the last, symmetry about the central plane 
of the channel) may be written 

u M (cosh M -  cosh M 0 

U 0 M cosh M - s i n h  M ' 

j u 

aUoBo J-1  + Uo' 

B~ sinh M~ { M c o s h M  } 
#ahUoBo - M cosh M - s i n h  M - ~ M cosh M - s i n h  M + J -  1 , 

where ~ = y/h. 

3. T h e  so lut ion  with  zero  thermal  conduct iv i ty  

An exact solution of the problem may be obtained in the case of zero thermal conductivity and 
constant absorption coefficient. It is then useful to introduce the following notation 

T2 
O - - temperature ratio across the channel,  

T1 

co = c~h = Bouguer No. ,  

t (h Vo) Reynolds No. 
N = \ p~U~o3} = Boltzmann N o . '  

T 
0 - - dimensionless temperature,  

T1 

q radiative flux 

Q = ffT~ = black wall emissive power" 
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Analysis then shows that 

2(1 - 0 4) 2M 2 

3o9+ + - 2 

p2 _ 2P sinh M x 
{ M cosh M - sinh M 

M2{ 2P sinh M(  
+ p2 ~ _ M cosh M - sinh M 

_1 {/3 4 
0 4 ~ 2 ~1 ~) o +  

3o9+2 + - 2 'S2 

3 ~ + 2 ( 1 +  1 ) -  2 

M sinh 2M ) 
+ 2(M c o s h  M -  sinh M) 2 

M sinh 2M~ } 
+ 2 (M cosh M - sinh M) 2} ' 

4 

E1 

M P  

2N~0 (M cosh M - sinh M) r,~.Wv,2 _ .  ,aco2) cosh M~ 3co 2 + cosh M} 

M2 p 2 
4Nco {~~ i} 

M 2 
+ 16No) (M cosh M - sinh M) 2 {(4MZ - 3~~ cosh 2 M (  + 3co 2 cosh 2 M }  

[ 1 2 1) §  ~1 + - -  + - - 

M cosh M - s i n h  M + 2(M cosh M - s i n h  M) 2 " 

The limiting case, M--.0, corresponds to zero magnetic field and radiative Poiseuille flow in 
rdinary fluid mechanics. For this special case one finds 

!X 3 2 - - =  ~ ( i - ~  ), 
Uo 

Q = 
2 ( 1 - O  4 ) 

3 2( / 
3 o ) + 2 ( 1  + 1 )  ' ~ - 2  

a {( 4 ) ( 4 
0 4 = ~ 3 o ~ + - - -  2 + 3m + - - -  

9~:~- #/:,_,/} 
+ 4Nco { 

3(1 
g2 

2) e4--340~(0 4- 1)} 

0+2(~ 0(~ -~ ) 
+ ~  
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The general characteristics of the flows may be classified in the magnetohydrodynamic case 
according to the sign and magnitude of the parameter J. 
(i) J =  1. In this case E = 0  and the electrodes must therefore be short circuited. Calculation 

of the Lorentz force, j x B, shows that this always opposes the flow so that the flow pattern 
corresponds to that of an electromagnetic brake. 

(ii) 0 < J < 1. In this instance the mean current is positive and a finite resistance must therefore 
be inserted in the external circuit between the electrodes. Power may thus be extracted 
from the channel flow and the device corresponds to a magnetohydrodynamic generator. 

(iii) J = 0 .  For  this case E = 1 and the circuit is open. For  given magnetic field Bo one may 
thus determine the mean fluid speed U 0 and the configuration has the characteristics of a 
flow meter. 

(iv) J < 0. With negative values of the mean current an external power source must be placed 
between the electrodes and the characteristics are those of an electromagnetic pump. 

The variations of velocity and induced magnetic field across the channel are completely 
unaffected by radiative effects, and thus as well-established results of Har tmann flow are not 
considered further here. The radiative flux and temperature distributions are presented in 
Figures 1 and 2 for several values of Har tmann number, radiative parameters co and N, wall 
emissivities 81 and 82, temperature ratio O and each class of flow characterised by the sign and 
magnitude of J. In the absence of thermal conductivity the temperature slip at the walls should 
be noted. It is also observed that the Bouguer number has little effect upon the radiative flux 
whilst the magnitude of the Hartmann number and the ratio of the Reynolds number to 
Boltzmann number are of considerable significance. In the case of the temperature distribution 
the Bouguer number is also seen to be an important parameter. 

Calculations have also been carried out for the same values of J, co, N and M for the cases 
when (i)O =1, gl =0. l ,  g2=l ,  (ii)O =0.1, 81=1 , 82=1 , and (iii)O =10, 81=0.1, e2=1.  The 
results however portray similar effects to those illustrated in Figures 1 and 2. 
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